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For testing the hypothesis that several (s » 2) linear

L.f) Voo Lita

S 1 . .= g 3. + 2. =1,...,
regression surfaces X e ki Z (k 1 s)

—=

are parallel to one another, i.e., Bl = ... = fs , a class of

rank-order tests are considered. The tests are shown to be
asymptotically distribution-free, and their asymptotic efficiency
relative to the general likelihood ratio test is derived. Asymp-

totic optimality in the sense of Wald is also discussed.
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2.

0. Introduction. Consider s (2 2) linear regression

| models

i (0.1) X . = o

ki + 8 z

" ~kgki + ki i=1l,....n_ : k=1,...,s

k

where, for each k =1,...,s, Oy is the (unknown) intercept,

(0.2) R, = (8

’k )

8
k1" "kq

is a g-dimernsional! vector of unknown regression parameters,

-

(0.3) ( )

,...,qul

Cxi Cx1i

is a g-dimensional vector of known regression cornstants for each

i= l,...,nk , and the Zki are all independent (error) random '

variables with the same (but unknown) continuous distribution

(0.4) F(x) = P(Zki < x) , XxX=1,...,8 ; i = l,...,nk .

A problem of interest is that of testing whether the s regres-

sion surfaces are parallel to one another, i.e., _Accesslon For ~J
NTIS GhAal w
TIIC TiH S
Lninrernced i, i

. - = - Q CHSLIT e L

(0.5) Hy @ 84 “en ey 8 (unknown) o

Ry
vs

. R
H : Bk # 8, for some 1 < k # 3 - s .

For the special case g =1, i.e., testing the parallelism of sev-

eral regression lines, Sen (1969) has proposed a class of rank order

tests. In the present paper we study the problem in the general

case g > 1 . Preliminary notations and assumptions are given in
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3.

section 1. In section 2 a class of asymptotically distribution-
iree aligned rank-orcer tests are proposed. These are univariate
counterparts of @ multivariate problem briefly mentioned in Sen
and Puri (1977) but not solved. The asymptotic distribution of
the test statistics is derived 1n section 3. In section 4 we
derive the asymptotic relative efficiency of the proposed tests
with rospect to the general likeliheod ratic test of the same pro-
plem.  Finally, ir scection 5. asymptotic optipality in the sense

o oW Td 11940 i discursed.

L. Preliminary Notations and Assumptions. For each

k=1,....8 let

(1.1) G ok
., c,. = n.” Voe,. = (¢ ce.., O '
kAk k = ki klnk kan)
where
;o k
1. c - n, Voo
(r.2) Ckmnk "k 421 “kmy ¢ M= L e

We assume that the o x @ symmetric matrices

Dy

. = 5
{(1.3) Mkn

2l
=
i

fe. . - -
K i"‘l okl .knk) (Ckl “kn . l,....s

are positive definite and that the limiting matrices

(1.4) M = 1lim n M , k =1,...,s

exist and are positive definite. Simplifying some of Jured&kova ‘=

e oy e =
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{1371) conditions on the regression constants, we also assume

that each ¢ can be expressed as a difference

“ki1

: ki T Sxi(1) T Ski(2)
" (1.5)

: %i(3) = Cx1i() 7 Ckqi(y)]

where, for each k =1,...,8 , m=1,...,9 and j =1,2, Ckmi(j)

is nondecreasing in 1 , and the Ckmi(j) s satisfy

lim n max c, . = =0 , '
Nyra X 3in kmi (§) xmn, ()
(1.6) N ny
c n Y oCp s
kmnk(J) ko5 kmi (3) ¢
and B
(1.7 lim n~l ?¥ e - C ]2 e (0,) ]
ny e LS kmi (3) kmnk(g)
which together imply the Noether condition
(1.8) n,
. . ~ 2 - 2
lim { max C, 4y - C ) // § fe, .,., - ¢ 1Y =0 .
n e Leiony kmi (j) kma, (§) /L2y Tkmi(§) kmn, (j)

We denote the total (combined) sample size by ‘

(1.9) N

H
n ~1n
J

and assume that the limits




(1.10) £y = ;ig (nk/N) r k=1,...,8

exist and satisfy
(1.11) r = rk sl-r ,k=1,...,s

Q (o]

for some 0 < ro < 1/s . Thus we have

(1.12) lim n, = @k =1,...,5
N ~co
and
]
(1.13) ) re =1,
k=1

and the matrices

M

k=1,...,s

(1.14) My = lim N“lmkn = lim (n /N)M,
X

N+ N

D L
are symmetric and positive definite.

For each positive integer n , let the scores an(l),...,an(n)
be generated by a non-constant and square integrable function

on (0,1} according to one of the following two ways:

(1.15) an(i) = Yli/(n + 131, i=1,...,n

or

(1.16) an(i) = Efw(Uni)] , 1i=1,...,n

where Unl £ ... € Unn are the order statistics of a random sample

of size n from the uniform distribution over (0,1). We assume

that ¢ can be expressed as the difference o = wl - ¥, of two
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non-decreasing and absolutely continuous functions wl and

w2 on (0,1) . Let

1 1l
(1.17) (YY) = {f [y(u) - @]2 du}% . v =[ ¢(uydu .

0 0
Thus we have 0 < A(¥) < = |
We assume that the underlying distribution function F has
an absolutely continuous density £ = F' with finite positive

Fisher information

(1.18) 0 < I(f) = [ CE' (x) /F (x) 12dF (x) < o .
We note that
1
(1.19) 1(f) = txwf)}z =[ [6g(u) 123u
0
where
(1.20) o = - rr twizerr iy L w e 0
with
1
(1.21) 5f = delwau = 0 .

2. The Proposed Rank-order Tests. For ? = (bl,...,bq) ¢ RY

and Xk =1,...,8, let

(2.1) Rkink(p) = the rank of in - P?ki among
xkl - ngl”"'xknk - Psknk in the ascending order of
magnitude,




(2.2) s )y = § (g . ~-¢© ) a_ [R

kmnk < 1 K X kink

where a_ (1),...,a (nk) are generated according to
ny ny
or (1.16) (with n replaced by nk),

(2.3) sknk(lg) = (sklnk(p),...,skan(b)) .
and define
s
(2.4) Sc(2) = T S (B) = (S (B)onn Sy (0)
Let
(2.5) Biyy = (B e r? ; mzll Sym(P) | = minimum}

and choose one element

A

(2.6) @N € B(N)

as an estimate of B8 . Define the s vectors of aligned rank

~

statistics
A -
(2-7) gNk - §knk(E‘N) ’ k 11. P
and let
-1 S nk _ 2
(2.8) Ay = N ool rfa, (i) - & %17
k=1 i=1 k k
where
-1 nyk (1)
(2.9) a =n ) a_ (1) , kx=1,...,8
Ny X i=1 Ny

7.

(?)11 m = l,---:q

(1.15)
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Then a class of aligned rank-order tests of (0.5), each deter-
mined by a score-generating function ¢ , can be based on the

statistics

(2.10) Oy = }‘;12 Z SNkM'kn ~Nk '

whose asymptotic distribution under Ho is given by Theorem

2.1, which in turn follows from Theorem 3.1 (see section 3).

Theorem 2.). Under H . QN has _asymptotically the (central)

chi=-square distribution X s-1)q with (s - 1)g degrees of free-

dom.

For 0 < e < 1, let x2 be the upper 100e% point

( -l)q:

of the X(s-l)q distribution. Then for large N we have the
following asymptotically distribution-free test of approximately

size ¢ :

(2.11) Reject Hj (in favor of H ) 1if and only if

2
Q z X(s—l)q,e )

3. Agymptotic Distribution of the Test Statistics. Consider

the sequence of hypotheses

- - - * —

(3.1) Hy ¢ 8 = By B+ NTBY, k=1,....s

where the s vectors b; € If!, k=1,...,s are such that
L

(3.2) b =0 .
kly ok T

'}




Then the asymptotic distribution of QN under HN is given by

the following theorem.

Theorem 3.1. Under HN , QN has asymptotically the non-

) . . . 2 .
- t ; -
central chi-square distribution Y(s—l)q(AQ) with (s l)g

degrees of freedom_and noncentrality parameter

s
oy 42 * el k-
= Iy {d mY D

(3.3) A Ty, £) /2 () kél by Myb¥
where

1
(3.4) y(p,f) = w(u)d>f(u)du .

0]

Remark. Clearly for b; = .. = ?; = 0 , which satisfy (3.2), '1

HN reduces to HO, and Ao reduces to 0 . Thus Theorem 2.1 is

a special case of Theorem 3.1.

For later purpose we also estimate the Bk's separately. For

each kX =1,....8, let

(3.5) B = R : ?

(o) | = mirnimum}
kny m=1

S
+

kmnk <z
and choose one element

(3.6) A ;B

knk knk
as an estimate of §k based on the k-th sample
(3.7) ¥k“k = (xkl""’xknk) .
We note that since the s samples §lnl,...,§sns are independent
so are the estimates Elnl""’gsns . By Jureckova's (1971)
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results (see Theorems 3.1 and 4.1, and Lemmas 4.1 and 4.5),

-~

ny -k
asymptotically normal (denoted by Nq), i.e.,

1
the cistribution (denoted by D ) of nz(%k is

)

(3.8) prnfd, - 81— N _(0, A v E) 12Ty (x =1

- D“‘kwkhk ~k] q~IL w 'Y\b: ] k) = ,-.-;S)
and
(3.9) n. %S (8 (k =1,...,8) .

) = o (1)
K nknk ~knk P
Similarly we have

1 A
(3.10) N %5 (7

Sy JN) = op(l) .

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2. For each k =1,....s8 Wwe have

_1 A
(3.11) NS = Y (0, EINE(B,

A *
TNk B @N)Mk + op(l) :

v
Proof. By Theorem 3.1 of Jureckovid (1971), for each

Dy

k=1,...,s we have

A
-4 - %
Ny ?knk(§knk) Py §knk(§k)
(3.12)
% A M, 4+ O (1)
- Y(w,f)nk(gknk - By IMy p(
and
1 A
-4 - %
Ny %knk(gN) = Dy §knk(§k)
(3.13)

A
- YW EInE(By - BOM + o (1) .
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Subtracting (3.12) from (3.13) and using (2.7) and (3.9), we

have

(.14 npR = v (e, enidd

A \
K Sy S M+ o ()

{3 -
‘:knk TN Tk
1
Multiplying both sides of (3.14) by (nk/N)3 and using (1.14),

we obtain {(3.11).

For later use we also define the g + g matrix

:(d

s
- \ = o »
(3.15] D i M mﬁ)m,£=l,...,a

which, being 2 sum of symmetric and positive definite matrices,

is itself symmetric and positive definite and hence has a symmetric

inverse
(3.16) A=D1 = (a,)
- gmi g, m=1,...,qd
Thus we have
8 * ? .
(3.17) DA = AD = )} A = A M, =T _ ,
Ky k=1 © 4

where Iq is the q x g identity matrix.

Notation. Let {Un} and {Vn} be two sequences of random

vectors of the same dimension. Then

(3.18) gn ~ Yn if and only if gn -~ Yn = op(l) .

Lemma 3.3.

LA y, S
(3.19) N?3_ ~ N2 §
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Proof. By (2.4), (2.7), (3.11) and {(3.15) we have

1, A S g
NTs (8) = T N ‘S
UNCEN KE1 “Nk
s A
= 5 £ N%(g - 2 a0 (1
iy v {u, £) Yk S0 M p( )
LS a * o
= i F\ .’2 3\ - ' \‘ N .
y(u, EYIN kzl iknkM.k N2 op(l)

Since «~{.,f) is a non-zero constant, by {(2.10) we have

S
*

3
Z fknkMk ¢

k=1

(3.20) %Q D -~ N%
which, together with (3.17), implies (3.19).

Lemma 3.4. Under Hy for each k = 1,...,s we_have

2 *~1

LA
“ 2 n ¢ T

Proof. By {3.1), under HN for each k = 1,...,8 we have

i) k) ;s
CGrn, = 8 = Pyl = B+ /My

and so by (1.10) and (3.8) we have

Lon
D[nk(gkn

N * ' S2,,-1
SR I Ee S AP AT S e T

Hence, by (1.14), under HN the random vector

o
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e

A
N3,

L L A
- Y = =2, -~ 7
Tkn 2) (nk/N) nk(§ r)

X kny

. . . . * .
is asywptotically g-variate normal with mean bk and covariance

matrix
. 2 -1 -1 v 2.,.*1
/vy o B) 1T M T = () /y Gy B) M
Lemma 3.5. Under HN , the sg-dimensional random vector
) o= i 5 A :
(3.22) N (flnl = OAnrererbgn TRy
S
is asymptotically normal qu(b*,[l(p)/v(;,f)“dJ) ., where
Lk * * "
(3.23) ? - (Pll...'?s)

an J can be partitioned as

(3.24) J = (ka)k,j=l,....s
with
(3.25) S, =6 Mt _a
xJ ki
(ij being the Kronecker delta). f

Proof. We prove Lemma 3.5 by showing that any linear combi-

nation of the components of TN is asymptotically normal under

HN , with the appropriate mean and variance. Let

i

s
(3.26) £ = (t,....t) e RT |

where




§ux

14.
27 = q -
(3.27 by 7 (Bgreeeityyd € B k= Loos
and let
s
(3.28) u= 1 t .
k=1
Then oy (3.19) we have
s A
Tt = ¥ N%(R - 2 )t]
N x<1 .knk NT Tk
(3.29) - Y N“i’?".}'n t}l _ NL?:\%Nu'
k=1 Uk e
§ 15’\ £ l,1 SZ A * .
~ ) N5 - N* £ M. Au
k<1 ~knk~k kzl‘knk k3

A
By making the substitution 8 = (%k - ) + A on the right-
“kny “kn, d .

hand side of ~ in {(3.29) and then making cancellation (using

(3.17)Y), we have

. s A . .,
(3.30) Tyt ™ kle (9knk - 8) (ty - mau’) .
Now by (3.21) and the symmetry of M; and A , under HN the
random variable

L oA _ . mFan”
N (ank g)(t My Au”)

is asymptotically normal with mean b;(ti - MXAu") and variance

o 2 * *"l - * -
IN() /y (o, €)1 (@k - UAM) M, (t} - MAu’) .

A

So, by independence of the Bkn ‘s , under HN the right-hand
~kny
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side of (3.30) is asymptotically normal with variance

[X(&)/«(;,f)‘zcz where
(3.31) c? = : (t ¥ e - Mrau-
-3 ’k£l~‘.‘}AMk)k By - MpauT)
and mean
§ * * ? * ? *, K
Yooby (] - M AUVT) = bytl - () brM7)Au’
k=1 “h oS ; k=1 KK ey KR
(3.32)
= p*t”

the last equality in (3.22) being a consequence of (3.2).

Expanding the right-hand side of (3.31) and using (3.17), we have

2 E *=1 ?
c“ = ) t t; - t, Au’

)iy 0k Tk T L T
= £ *-1

= ¥ ot ) (8 MY At
k=1 ~K j2p KITJ -

= EJ;’ .

Thus, for any t.eimsq , TNt' under HN has asymptotically a

(possibly degenerate) normal distribution with mean b*t” and

variance [A(w)/y(w,f)]ZtJt‘ . It follows that

* 2
(3.33) DATyiHY) = N (BT A W) /v (v, £)179) .

"y
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Lemma 3.6. Under HN , the random variable
(3.34) Q% = vy, O ()12 1 (@ oMt (e 8y
.3 = Ny (v, )2 - B o - A
N k=1 ~knk Nk -knk -N
} . 2
is_asymptotically X' )y, {85) .
Proof. Let
(3.35) Yn f ry(y,f)/x(w):?N = (le""'sz)
wher?
(3.36 Yo =ty (. £)/x(w)ne(d : k=1
. ) -.Nk— ‘_Y Ry ~‘¢ S (?knk"rN) ’ - ,...,S .
Then by (3.33) we have t
(3.37) D (Y By) > N (Y @ B/ 1" 0) .

Define the (sg) x (sq) symmetric matrix

(3.38) K = { )

_ *
Keilx, 321, .., = ™Iy, 5=1,....s -

Then (3.34) and (3.3) can be rewritten respectively as

s

-— LEv -— [l
(3.39) oy = kgl Tokcnk = Yk
and
(3.40) by = 1Ty (p, £) /A () IO IR{Cy (v, £) /A (9) 1D} .

Q

So, to prove Lemma 3.6, it suffices to show that KJ, or equiv-

alently its transpose

(3.41) W JK ,
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is i1dempoetert with trace equal to (s - 1l)g and that
(2.42) b KIKb* = b*Kb*’

(see .‘carle (1971), Corollary 2s.l). By direct computation

we have
) =
(3.4° W= Wi, 5=l s
wiere:
A0 - - _ %* _
(3.4 W‘(j ijq AMJ K,J3°1.....:

By further computatior and (3.17) we have W° = W . Or the other

nand
RIK = KW= (8 M - MAMD)
and 50
b*KIKLY * = ? b¥M¥pr” ( 2 bImM*y A ? Mip*”
- ; oy CKKCK ko1 RORT g )
(3.45)
= b*kb™"

where the last egquality in (3.45) follows from (2.2},

Tt remains to compute the trace of W . Let

(3.46) Mr o=

K )

B S

i

l1,....8 .

“km? m,e=1,...,9

Then by (3.15) we have

S
(3.47) a .= Z c




and ooy 2 TeY gand (2 17T) we have

R
T NN 1, =1,y

w0 IR LI P
Mow otk L, = . by (3.44) we have

W L, MY

9
f a, ¢ . ‘
NS (T S .
” L ror [
-y N R 2 a [

<K S m L kin
Te Wit
(4.3 trfwy - 7 ey W Y = sy - g~ (s 1) q

k1 hk

Thas temma V.6 s estahtished,

Croof ot fheorenr 3010 By Lemma 1.6 1t suffices to

R *
(3,0 - )
TN N
Ry (Lorsy, U W%y - (L1 7Y and (2.9) we have
VV.k
-3 o e 2
13m n, : a Y - a b\ (v . -1,
! n n
N vl X k

and so by (<.% . {1.10) and '1.13) we have

(3.51) Iim v 7 Aly) .
N .on

1t follows from (3.11) and (3.36) that

LA
/:: -

5 2,-%% .
(3.52) (DT Y My

., k=1,...,8 .

ve e, S

18.

show that
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Now by (1.14) we have

. o |
(3.53) lim NMk =M , k=1,...,s
N-oo My k

It follows from the symmetry of M; that

=2A - A, .
25 w1 Y. M*

(3.54) ‘s Snx knRSNk T YoMk Ik

Sumiting up both sides of (3.54) over k = 1,...,s and using

(2.19) ard (3.39), we obtain (3.50). Thus Theorem 3.1 is proved.

. 4. Asymptotic Efficiency. Using (3.7), we rewrite (0.1) as

(4.1) X = X1 + . C, + 2 , k= 1,....,8
: ‘knk kank ~k-k ~knk '
; where
| N
b (4.2) =(1,...,1) eR .
°n
i k
§ (4.3) 2o = 2y eee 2 )
, ,knk k1l knk
and
"‘l (4.4) Ck = (gklrﬁno/gknk)
é
: is a q x n, matrix.
' Let 1
|
(4.5) ¥N = (¥1n ""‘an.) . f
1 S }
R (4-6) Z = (Z l"'lz ) ’
; ~N ~lnl ~snS

L
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(4.7) a = (al,...,qs) .
(4.8) 0 = (a8 eennby)
and let
{(4.9) Ek = (91...,}n ....,9 ) , k =1,...,s
k
be the s x nk matrix with 1 as the k-th row and all the

“n

k
other rows being 0 . Then the s 1linear models in (4.1) can
be corbined into one linear model

(4.10) X, = ecr + 3

where '

1 2 s
(4.11) c,y o ... 0
*
Cy = 0 C2 e « « 0

e S J

is an Is(q + 1)] x N matrix. The parameter space for 6 is

the s{g + l)-dimensional Euclidean space
(4.12) ¢ = rS(a+D)

and Ho can be expressed as

e

(4.13) H = {(él?

° o ""l-?s) € §i ¢

ll

The likelihood ratio test of (0.5) rejects Ho {in favor of H )




21.
if the likelihood ratio
Ny .
A TR 4 _ - . - -
A sup _I II f(Xki ay }?Ski) ra e R,k l,...,s; b eR Y/
k=1 i=]
: s nk
cupe T r - - Y s oa. e q = 1
suap+ N ) f(xki ay ?kgki' Poay o« R , pk e R* , k l1,...,s!
k=1 1=1
;
is small, or equivalently if
1. = -
(4.14) Ly 2 log AN
is larce. Her» £ (or equivalently F ) is assumed to be known.
Under Assumptions I - V and VII of Wald (1943), but no assumption

concerning the shape of F , the asymptotic distribution of L

N
under HN is given by Theorem 4.1, which will be proved later in
this =ection.

. . 2 .
xr.o4.1. U 1, X
Theorer. 4.1 Under Hy Ly 4is asymptotically (s—l)q(AL) with
s
t FUL N I
)] =
(4.15) A I(f)kzl b M b " .

To compare the proposed rank-order tests with the likelihood

ratio test, we make the additional assumption that

(4.16) b; #0 for some 1 < k <« s , .
: ‘ |

which makes the right-hand side of (4.15) strictly positive. Com-
bining Theorems 3.1 and 4.1, we have the asymptotic relative effi-

ciency.




e P Ay i e s

e A T e A YVl 18 o

" oo ;hi-lllnv"'“"“

22.

Corollary 4.2. The asymptotic efficiency of the aligned

rank-order test of (0.5) (based on QN) relative to the likeli-

hood ratio test (based on LN) is

o, (F) = ¥ (.8 /11822

(4.17) 1 1

1 2 , 5
= [ 'J)(u)d)f(u)du]/[ [¢f(u)] du fi({u) - J)jzdu]

¢ 0 0

Clearly if the score-generating function ¢ 1is the same

as  ¢¢ - then the right-hand side of (4.17) reduces to unity.

Corollary 4.3. With the score-generating function vy = ¢ -

the aligned rank-order test of (0.5) has asymptotic relative

efficiency one with respect to the likelihood ratio test.

Examples. If F 1is the standard logistic distribution
function, then y(u) = ¢f(u) = 2u - 1 generates Wilcoxon-type
scores; and if F = ¢ 1is the standard normal distribution func-

tion, then ¢ = ¢,. = s™! generates normal scores.

Proof of Theorem 4.1. Consider the map

(4-18) g - (§0!§11--01§s) : Q > Q
defined by

§0(§) =2 él(g) = @1 '
(4.19)

F = - = = o
£ (9) B B, for k=2,...,8 , (8 = (a.By...0.80) € )




Let
Sy T Bgrfr) T (e ebgyy)
(4.20)
§(2) B (52""'§s) = (gs+q+1""’gs(q+l)) .
Then HO can be expressed as
(4.21) G0 =0

23.

Clearly ¢ is a homeomorphism and, with the identification

(4-22) ? = (g,gll---lgs) = (611---,Gs(q+l)) ’

has a positive Jacobian det(ag/ag) not depending on
over, the first two partial derivatives of gl(g),...,g
are uniformly continuous and bounded functions of 0 .
the inverse g = g-l of ¢ 1is given by

~ <

(4.23) e(g) = (g5, 6y, 814y -c v EqFEL)

with Jacobian matrix

r— —

I, 0 0...0

0 I_ 0...0

o 1. 0
(4.24) M= (d8/3g) =| @ a " -

0 I_ 0...1

- q q |

(whose determinant is equal to unity).

Now consider the 's{q + 1)] x [s(g + 1)] matrix

8 ; more-

s(q+l)(?)

Indeed,




L - - s oy

"

(4.25) Ay
where

(4.26) E =
(4.27) Dk
and

(4.28) Fk

is a gq * s

elsewhere.

{s(g + 1)1 < 's{q + 1)1

(4.29) Ay
where
(4.30)

is (S+q)x(5+q) ’

24.

=1,...,s

th column and

E F1 F2 ..
Fl Dl 0 . e
F 0 D .
* . 2 2
N h . . . .
F 0 0 .. D
s
(81i™) %, j=1,...,s
“x
4 = ¥ 4 =
Sk T . SkiSki ¢ K
i=1
(0°,...,n, ¢ s e, 07), K
e k~knk 2
matrix with nksknk as the k-
By routine computation we have the
matrix
™ x *
Anilr PNz
M ANM = . ,
| An21 Pn22
E ) Fy
. k=1
A =
N1l § ?
F D
k k
k=1 k=1
L -
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F. ... F’
(4.31) N °
R D, ... D
Z S
! * — * »
(4.32) Ay21 T AN12 -
and
2 * = \t .
(4.33) AN22 (‘kJDk)k,j=2,...,S :

We note that by assumption AN is positive definite, hence so

. * ~ .
s A, - Consider the matrix

He -1

(4.34) Moo= 5 0M .
%N k=1 key

which is symmetric and positive definite and hence has a symmetric
inverse

(4.35) G, = MN ,

and define the d x s matrix

(4.36) CN = (glnl sn

Then by routine computation and the obvious identity

(4.37) M -~ D - n ¢ __ o , k=1,...,s
knk k k~knk~knk
it can be checked that
cse. &+t ~-C.G
o1 NUN-N NN
(4.38) A =




-1_. — - ,
[e] = & =
(4.39) FkE Fj (kjnk€knkgjn. , k,j 1,..
]
we have
* *— * -
(4.40) AN21AN1 AN12 = k kn Jn * Mkn GNMJn

k-

Sc we have the [ (s - 1l)gl] x [ (s - 1)gl matrix

*

. _ % * *-1_ *
(4.41) Ay = Ag,n - AgsiATTPN12

(éijkn "en, © NJn 'k, j=2,....s

i

Now HN can be expressed as

(4.42) HN : 0 =680 = (9,8

We also note that

= "5 * * *

2,...,

Then, by Theorem IX of Wald (1943), LN under

By further computation and the additional identity

is asymptot-

ically noncentral chi-square with s(g + 1) - (s + q)

degrees of freedom and noncentrality parameter

(4.49) by = T(E)E(y (8) BRE (2 (8 7 = T(E)ag
where

(4.45) Ay = NTH(D - (D) - (11D + (V)]
with

~—

(s - 1)g




i

(1)
{4.46)

* *A AT (¥ *\ -
(b}, ..., bX)AY(D]. ....BY)

s
= Y b*M ¥ - | z b*a
I
Lo PxMkn, Pk ®k"kn,
- Y% *y\ R ¥ * *, "
(11) (92,...,§S)AN(91,...,pl)
(4.47) %
= *
( : ~kMkn N l»l ‘
(4.48) (111) = (1)
and
* * . —% * * -
(IvV) = (pl,...,bl)AN(pl,...,pl)
(4.49)
- p*M. b* - b*™M,_ G M _ by’
~1 lnl 1 ~1 1nl N lnl~l
By (1.14) and (3.2) we have
1§y
(4.50) Lin 7 D oyl = -RYM

And by (3.15) - (3.16) and (4.34) - (4.35) we have

(4.51)

1t follows that

S
lim AY = ] be
N~ k=1

The proof is complete.

lim NG

Noyroo

O kbk

N2

and so

lim A

N Ao

II ~1n

v
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5. Asymptotic Optimality. Let T and B be non-

N) N

singular square matrices of orders s + g and (s - l)q ,

respectively, satisfying

5.1 T = *
(5.1) "N1Th1 T Awi
and
5.2 - = e
( ) BNBN Ay
and define the (s + q) % (s - 1)gl matrix
y '-l *
T =
(5.3) - (FNl) AN12
Then the square matrix
N1 Twe
(5.4) K, =
N 0 B

of order s(g + 1) is nonsingular and satisfies

*‘“l'_
(5.5) KNAN Ky = Is(q + 1) -

"

For (a,b,...,b) ¢ QO and ¢ > 0 define the surface

(5.6) S (w, c)

"0 v T ) (ARE () ()7 = e E(EIT"= (@.pITG))
where

(5.7) roo= (T

N )

N1’ N2

is (s + gq) ¥ i!s{q + 1)1 . Consider the transformation of
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. * * * 3 .
(5.8) ¢ = (g,bl,...,ﬁs) - (9'51""'§s) = [I(f)]ég(g)KN
where
(5.9) (*,e%) = 16 % (o) T
and
5.10 ST = s 9) B
( ) (;2 ) I(f)) §(2)(?)BN
which maps 3(w,¢) into
(5.1
q*(u,c)
= ((73] ) o hED = (%@, 1 erer = e
- (\;}1:‘7110‘-:"5 ¢ . ‘31_‘:’1) - !I( )] él‘\-){Nl' 3 :k~k = C
k=2
For QO ¢« ¢ and p > 0 let
(5.12)
S2(901“)
= {& . Q 28,0, ¢ S(w,c) for some we 2, and c>0, and ||6 - edl < pl
(|l |l being the Euclidean norm on Q ) , and let Q*(eo,o) be

its image under the transformation (5.8). For 6 ¢ © let

(5.13) n(8) = lim {ALQ*(8,0)1 / ALQ(8,p)])

- 00 N <
where A denotes area. Then by Theorem VIII of Wald (1943) the
likelihood ratio test of (0.5) is asymptotically optimal in the

sense that it




30.

{a) has asymptotically best average power with respect to

the weight function n(8) and the family of surfaces

(5.14) S = {s(w,c) : we Q c >0} ;

0 ’

(b) has asymptotically best constant power on the surfaces
in S

and

(c) 1is an asymptotically most stringent test.

By Corollary 4.3., with the score-generating function
¢ = ¢f the proposed rank-order test is asymptotically power-
equivalent to the Wald-optimal likelihood ratio test. Thus if
the underlying distribution F is logistic, then the QN—test
using Wilcoxon-type scores is asymptotically optimal; and if
F is normal, then the normal-scores rank-order test is asymp-

totically optimal.
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